An experimental study of shared sensitivity to physical pain and social rejection

Naomi I. Eisenberger a,*, Johanna M. Jarchob,*, Matthew D. Lieberman b, Bruce D. Naliboff c,d

a Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, USA
b Department of Psychology, Franz Hall, University of California, Los Angeles, CA, USA
c Center for Neurocultural Sciences and Women's Health, David Geffen School of Medicine, University of California, Los Angeles, USA
d VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA

Received 21 March 2006; received in revised form 8 May 2006; accepted 19 June 2006

Abstract

Recent evidence points to a possible overlap in the neural systems underlying the distressing experience that accompanies physical pain and social rejection (Eisenberger et al., 2003). The present study tested two hypotheses that stem from this suggested overlap, namely: (1) that baseline sensitivity to physical pain will predict sensitivity to social rejection and (2) that experiences that heighten social distress will heighten sensitivity to physical pain as well. In the current study, participants’ baseline cutaneous heat pain unpleasantness thresholds were assessed prior to the completion of a task that manipulated feelings of social distress. During this task, participants played a virtual ball-tossing game, allegedly with two other individuals, in which they were either continuously included (social inclusion condition) or they were left out of the game by either never being included or by being overtly excluded (social rejection conditions). At the end of the game, three pain stimuli were delivered and participants rated the unpleasantness of each. Results indicated that greater baseline sensitivity to pain (lower pain unpleasantness thresholds) was associated with greater self-reported social distress in response to the social rejection conditions. Additionally, for those in the social rejection conditions, greater reports of social distress were associated with greater reports of pain unpleasantness to the thermal stimuli delivered at the end of the game. These results provide additional support for the hypothesis that pain distress and social distress share neurocognitive substrates. Implications for clinical populations are discussed.

© 2006 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Keywords: Pain sensitivity; Social exclusion; Social pain; Dorsal anterior cingulate cortex; Social rejection; Pain threshold; Pain unpleasantness

1. Introduction

Research has begun to reveal similarities in the neurocognitive processes underlying physical pain and ‘social distress,’ the painful feelings following social rejection or exclusion (Eisenberger and Lieberman, 2004; MacDonald and Leary, 2005). English and non-English speakers alike use physical pain words to describe experiences of social distress when complaining of “broken hearts” or “hurt feelings,” implicitly indicating the phenomenological similarity between physical pain and social distress, linguistically (MacDonald and Leary, 2005). In addition, recent neuroimaging work has revealed that the dorsal anterior cingulate cortex (dACC), commonly associated with the “unpleasantness” of physical pain (Rainville et al., 1997), is also activated during the distressing experience of social rejection, and its activity correlates strongly with self-reported social distress (Eisenberger et al., 2003). Moreover, based on the
elicit a specific rating (threshold) while minimizing bias from
non-sensory cues (Gracely et al., 1988). Pain unpleasantness
threshold was defined as a rating of 10 (very unpleasant)
on the 21 point box scale, which ranges from 0 = neutral to
20 = unbearable. Briefly, the DRS procedure chooses each
stimulus temperature based on a subject’s previous responses;
if the previous response is above the chosen threshold (in this
case, above a rating of 10) the next stimulus for that staircase is
lowered and if the rating is below the threshold the next stim-
ulus is increased (Gracely et al., 1988). Stimuli from two stair-
cases were presented pseudorandomly in order to mask from
subjects the rating-stimulus intensity relationship within a
staircase. Starting stimulus temperatures for the two staircases
were 39 °C (102.2 °F) and 41 °C (105.8 °F). Stimulus tempera-
tures on subsequent trials within a staircase were increased or
decreased by increments between 1.6 °C and 0.2 °C, with
smaller changes when the staircase crossed the threshold or
reversed direction. Stimuli were delivered until the staircases
converged on a temperature that evoked a 10 rating (for
detailed protocol, see Gracely et al., 1988).

2.2.2. Cyberball task

After pain unpleasantness thresholds were identified, par-
ticipants played a virtual ball-tossing game called Cyberball
(Williams et al., 2000). Participants were randomly assigned
to one of three conditions: (1) a social inclusion condition,
or one of two social rejection conditions, namely (2) non-inclu-
sion, or (3) overt exclusion. Participants were told that they
were going to be playing a virtual ball-tossing game with two
other individuals in different laboratories and that they would
be connected to these individuals over the Internet. In reality,
there were no other individuals; participants played with a pre-
set computer program that displayed cartoon images of the
participant and the other players on a computer screen (see
Fig. 1). Participants were told that once the game started, they
could toss the ball to either of the two other players each time
they received the ball by pressing one of two keys to throw to
the person on the left or the person on the right. Whenever
another player threw the ball to the participant, the participant
automatically caught the ball without any response on his/her
part.

Each game began with a still picture of the two virtual play-
ners in the upper corners of the screen and a hand, representing
the participant, in the lower-center portion of the screen. The
participant’s name was displayed below the hand while two
other names were displayed below each of the two virtual play-
ers’ animated cartoon representations. After 9 s, the cartoon
player in the upper left-hand corner started the game by throw-
ing the ball to either the other cartoon player or the partici-
 pant. The participant could return the ball to one of the players
by pressing one of two keys. The Cyberball program was set for
60 throws per game, with the computer players waiting 0.5–3.0 s
before making a throw to heighten the sense that the partici-
 pant was actually playing with other individuals.

Individuals in the inclusion condition played the interactive
ball-tossing game for the entire time, which lasted approxi-
mately 2.30 min. Individuals in the non-inclusion condition
were told that, due to some technical difficulties in connecting
to the two other players, they could watch the other two play-
ers play, but would not actually be able to play with them.
Individuals in the overt exclusion condition were included in
the game for the first fifty seconds (approximately) of the game
and then excluded for the duration of the game (approximately
100 s), when the two virtual players stopped throwing them the
ball.

2.2.3. Final pain stimuli

During the last thirty seconds of the game, participants
received three heat stimuli to their left forearm and rated the
unpleasantness of each. The heat stimuli were set to the thresh-
old temperature (at which the participant reported the pain to
be very unpleasant: 10 on the Gracely scale) as well as a tem-
perature 0.4 °C above and 0.4 °C below that target tempar-
ture. The order of the delivery of these stimuli was counterbalanced across participants. For each participant, pain unpleasantness ratings to each of the three heat stimuli were averaged to provide a measure of perceived pain unpleasantness during the Cyberball task.

2.2.4. Post-task questionnaires

Immediately after the game, participants completed a
measure of self-reported social distress (Williams et al.,
2000), which assessed participants’ feelings of self-esteem
(e.g., “I felt liked.”), belongingness (e.g., “I felt rejected.”),
meaningfulness (e.g., “I felt invisible.”), and control (e.g.,
“I felt powerful.”). Each item asked participants to indicate
the extent to which they felt these feelings during the task
on a 5-point scale, with ‘1’ indicating “not at all,” ‘3’ indi-
cating “moderately,” and ‘5’ indicating “very much so.” In
line with the original cover story, they also answered ques-
tions regarding the extent to which they were distracted by
the uncomfortable stimuli during the ball-tossing game. Par-
ticipants also completed a measure of neuroticism (Eysenck
Personality Questionnaire: EPQ; Eysenck and Eysenck,
1975), which served as a control measure to ensure that
any relationships between pain and social distress assess-
ments were not a result of their common correlation with
generalized stress sensitivity or anxiety (Tang and Gibson,
2005). Following the completion of these questionnaires,
participants were thoroughly debriefed and all questions
were answered.
3. Results

3.1. Manipulation check

Four participants who reported that they did not believe they were playing Cyberball with two other participants were excluded from further analyses (three of these individuals were in the non-inclusion condition, one was in the overt exclusion condition). An additional participant was excluded based on outlier data; specifically, this participant had pain distress ratings that were greater than 2.5 standard deviations above the mean for the social rejection conditions.

A one-way ANOVA confirmed that the different conditions of the Cyberball game led to different levels of self-reported social distress ($F(2,69) = 10.57$, $p < .001$). Post hoc analyses revealed that individuals reported greater levels of social distress in response to each of the social rejection conditions (non-inclusion: $M = 3.25$, SD = .89; overt exclusion: $M = 3.27$, SD = .75) than in response to the inclusion condition ($M = 2.49$, SD = .45; non-inclusion vs. inclusion: $t(44) = 3.72$, $p < .005$; overt exclusion vs. inclusion: $t(46) = 5.05$, $p < .001$). There were no differences in social distress ratings between the two social rejection conditions ($t(44) = −.06$, ns). Thus, individuals who were either not included or who were overtly excluded were significantly more socially distressed by the Cyberball game than individuals who were included.

3.2. Does baseline sensitivity to physical pain predict sensitivity to social rejection?

To assess whether baseline physical pain sensitivity predicted sensitivity to social rejection, we computed correlations between baseline pain unpleasantness thresholds and social distress ratings assessed after playing Cyberball. Because both of the social rejection conditions (non-inclusion and overt exclusion) resulted in similar increases in self-reported social distress, we first collapsed across the two social rejection groups in the initial set of analyses and then analyzed them separately in the following set. We hypothesized that individuals with lower pain unpleasantness thresholds at baseline (e.g., greater sensitivity to pain) would report greater social distress in response to social rejection than those with higher pain unpleasantness thresholds at baseline (e.g., lesser sensitivity to pain).

Results indicated that baseline pain unpleasantness thresholds were negatively correlated with social distress ratings in the social rejection conditions ($r(46) = −.35$, $p < .05$; see Fig. 2a), but not in the inclusion condition ($r(24) = .03$, ns; see Fig. 2b). These correlations were marginally significantly different from one another (Fisher $Z = 1.49$, $p = .07$). Moreover, a two-way ANOVA revealed a significant interaction between condition (inclusion vs. rejection) and baseline pain unpleasantness thresholds (high vs. low) in predicting social distress ratings ($F(3,69) = 3.85$, $p = .05$). Thus, individuals who were more sensitive to physical pain at baseline (e.g., lower pain unpleasantness thresholds) were also more sensitive to social rejection, as indicated by greater social distress ratings following non-inclusion and overt exclusion, but not following inclusion. In addition, the relationship between baseline pain unpleasantness thresholds and social distress ratings remained significant after controlling for neuroticism ($r(43) = −.37$, $p < .05$), suggesting that this relationship cannot be explained by a general tendency to experience anxiety and thus report higher levels of both types of negative experiences.

Next, we examined the correlations between baseline pain sensitivity and social distress scores in the non-inclusion and overt exclusion conditions separately. Baseline pain unpleasantness thresholds correlated significantly with social distress scores in the non-inclusion condition ($r(22) = −.42$, $p = .05$), but not in the overt exclusion condition ($r(24) = −.28$, $p = .19$), although the correlation was in the same direction. When controlling for neuroticism, the relationship between baseline pain unpleasantness thresholds and social distress scores in the non-inclusion condition remained significant ($r(19) = −.43$, $p < .05$), again showing that this relationship is not likely due to

Fig. 2. Scatterplots showing the relationship between baseline pain unpleasantness thresholds and social distress ratings during: (a) the social rejection conditions (non-inclusion and overt exclusion) and (b) the social inclusion condition. Each point represents the data from a single participant.
heightened levels of trait anxiety leading to greater pain reports to both physical pain and social isolation. When controlling for neuroticism in the overt exclusion condition, the magnitude of the relationship between pain unpleasantness thresholds and social distress remained the same and there was a trend towards significance \(r(21) = -.32, p = .14 \).

3.3. Do experiences that increase social distress potentiate pain distress as well?

To examine whether experiences that increase social distress also potentiate pain distress, we examined whether individuals in the social rejection conditions (non-inclusion and overt exclusion), compared to individuals in the inclusion condition, reported greater pain unpleasantness to the thermal stimuli delivered during the Cyberball game. We also examined whether greater social distress ratings in response to the social rejection manipulations were associated with greater pain unpleasantness ratings to the thermal stimuli delivered during Cyberball. We hypothesized that participants in the social rejection conditions, compared to those in the inclusion condition, would report more pain unpleasantness to the thermal stimuli delivered at the end of the Cyberball game and that, for those in the social rejection conditions, greater social distress scores would be associated with higher pain unpleasantness ratings.

Contrary to our first prediction, there were no significant between-group differences in thermal pain unpleasantness ratings across the inclusion \((M = 7.54, SD = 2.32) \), non-inclusion \((M = 7.60, SD = 2.29) \), or overt exclusion \((M = 7.91, SD = 2.45) \) conditions. However, there was a significant correlation between social distress and pain unpleasantness ratings such that individuals who reported greater social distress in response to the social rejection manipulations reported greater pain unpleasantness to the concurrently delivered thermal stimuli \(r(46) = .30, p < .05 \); see Fig. 3a). This relationship remained marginally significant after controlling for neuroticism \(r(43) = .27, p = .07 \). Not surprisingly, there was no relationship between social distress and pain unpleasantness ratings within the inclusion condition \(r(24) = -.01, n.s. \); see Fig. 3b). Thus, increased reports of social distress, activated through non-inclusion or overt exclusion, were associated with greater pain unpleasantness ratings, a relationship that was not simply due to higher anxiety levels contributing to both higher pain and social distress ratings.

When examining the non-inclusion and overt exclusion conditions separately, greater social distress was significantly associated with greater pain unpleasantness ratings during non-inclusion \(r(22) = .43, p < .05 \), but not during overt exclusion \(r(24) = .14, n.s. \). Additionally, the relationship between social distress and pain unpleasantness ratings remained significant after controlling for neuroticism within the non-inclusion condition \(r(19) = .43, p = .05 \).

4. Discussion

The present study investigated two hypotheses derived from the notion that pain distress and social distress rely on some of the same underlying neural substrates. Specifically, we hypothesized: (1) that baseline sensitivity to physical pain should relate to an individual’s sensitivity to social rejection and (2) that experiences that heighten social distress should heighten pain distress as well. The findings from this study provided partial support for both of these hypotheses.

Participants who demonstrated greater sensitivity to physical pain at baseline (lower pain unpleasantness thresholds) reported experiencing greater social distress in response to being left out of a ball-tossing game (non-included, overtly excluded), but not in response to being included. These findings support the idea that pain distress and social distress rely on some of the same computational substrates by demonstrating that sensitivity to one type of distressing experience is directly related to sensitivity to the other. Additionally, the relationship between baseline pain sensitivity and self-reported social distress remained after controlling for neuroticism, suggesting that the overlap between these

![Fig. 3 Scatterplots showing the relationship between physical pain unpleasantness ratings in response to heat stimuli delivered during the Cyberball game and social distress ratings during: (a) the social rejection conditions (non-inclusion and overt exclusion) and (b) the social inclusion condition. Each point represents the data from a single participant.](image-url)
two types of distressing experience is not simply a function of increased reporting of aversive events associated with neuroticism or anxiety. Instead, this relationship seems to reflect a specific shared process mediating perception of pain distress and social distress.

This study also demonstrated that individuals who reported feeling more socially distressed by being excluded or non-included reported experiencing more physical pain unpleasantness in response to heat stimuli that were delivered at the end of the Cyberball game. Although this relationship is correlational, it points to the possibility that experiences that heighten social distress can make individuals more sensitive to physical pain as well. However, it is also possible that the reverse is occurring, such that enhanced perceptions of physical pain unpleasantness led to greater retrospective reports of social distress. Regardless of the direction, these two processes seem to be moving together and possibly influencing one another. Moreover, the relationship between social distress and pain unpleasantness ratings was not present during the inclusion condition. In addition, the relationship between social distress and pain unpleasantness ratings in the social rejection conditions remained after controlling for neuroticism scores, indicating that the relationship between social distress and pain distress is not likely to be caused by generally increased perception of aversive events due to anxiety.

It should also be noted that, although there were significant correlations between social distress and pain unpleasantness ratings within the social rejection conditions, there were no main effects of the inclusion vs. social rejection conditions on pain unpleasantness ratings. In other words, simply being put into one condition or another was not, in itself, sufficient to affect the underlying pain system in this experiment. One possible reason for this is that not all individuals who were put into the social rejection conditions (non-inclusion and overt exclusion) may have actually felt left out or rejected. For example, on a 1–5 scale of social distress, participants in the social rejection conditions reported scores that ranged from feeling very little social distress (1.75) to feeling a considerable amount of social distress (4.83). It is possible that episodes of social rejection only influence pain sensitivity to the extent that an individual experiences these episodes as upsetting or distressing, and not in the absence of feeling rejection-related distress. Future studies that use a more potent manipulation of social rejection (so that most subjects feel high levels of social distress) will be needed to more thoroughly examine the effect of social rejection on pain experience.

Based on previous work showing neural differences in response to non-inclusion vs. overt exclusion, we also investigated whether social distress in response to these two rejection manipulations related differentially to baseline pain unpleasantness thresholds and to pain perception during the Cyberball game. Within the non-inclusion condition, greater baseline sensitivity to physical pain was associated with greater social distress, and individuals who reported experiencing more social distress in response to non-inclusion also reported more pain unpleasantness during the heat stimuli delivered during the Cyberball game. However, these relationships were not found in the overt exclusion condition.

One possible explanation for the lack of a relationship between pain distress and social distress ratings in the overt exclusion condition is that there was a narrower range of social distress scores in response to the overt exclusion episode than in response to the non-inclusion episode, making a correlation less likely. Another possibility is that, because overt exclusion, but not non-inclusion, activates neural regions involved in regulating negative affect (Eisenberger et al., 2003), it is possible that individuals who were overtly excluded were regulating their responses to the rejection episode, thus reporting somewhat blunted pain and social distress responses. To the extent that pain distress and social distress rely on shared neural circuitry, regulating socially distressing experience may have the unintentional consequence of attenuating physically painful experience as well, by reducing the activity of this 'general pain distress system.' This additional regulation process, which is not typically activated during non-inclusion, may contribute added noise and variance, thus obscuring a possible correlation between pain distress and social distress during overt exclusion. Further studies are needed to clarify what is driving the different outcomes across the non-inclusion and overt exclusion conditions.

The present findings build on previous literature suggesting an overlap in the neural systems underlying pain distress and social distress and thus may have important implications for both acute pain as well chronic pain conditions. With regard to acute pain, a great deal of correlational research has shown that individuals with more social support experience less cancer pain (Zaza and Baine, 2002), are less likely to suffer from chest pain following coronary artery bypass surgery (Kulik and Mahler, 1989; King et al., 1993), report less labor pain, and are less likely to use epidural anesthesia during childbirth (Kennell et al., 1991; Chalmers et al., 1995). One possible reason for these relationships is that the perception or presence of social support, which attenuates feelings of social distress, may have similar effects on reports of physical pain. Indeed, experimental work has shown that the presence of supportive others attenuates pain perception in both animals and humans (Epley, 1974; Brown et al., 2003). Thus, social support may be an important regulator of acute feelings of physical pain.

With regard to chronic pain, individuals who are more rejection sensitive may be at a higher risk for
developing certain types of chronic pain conditions. For instance, it has been shown that, compared to healthy controls, adults with chronic pain are more likely to have an anxious attachment style, characterized by a heightened sense of concern with a partner’s relationship commitment (Ciechanowski et al., 2003). Although these findings are correlational, it is possible that individuals with greater interpersonal or attachment concerns may be more vulnerable to chronic pain conditions. In addition, it is also possible that social stressors may be a uniquely robust predictor of symptom exacerbation for those with certain types of chronic pain conditions, contributing directly to symptom flares. Indeed, chronic social stress can adversely affect the treatment outcomes of individuals with irritable bowel syndrome, making these individuals almost completely immune to any type of treatment (Lea and Whorrell, 2004).

Finally, an overlap in the neural systems underlying pain distress and social distress also suggests alternative ways to treat and manage chronic pain conditions. For example, rather than treating pain symptoms directly, it may be possible to alleviate physical pain symptoms, in part, by treating the social stressors that may go along with them. Further studies are needed to test these hypotheses and to further explore the ways in which pain distress and social distress processes overlap or diverge.

Acknowledgements

This research was funded by a predoctoral research fellowship from the University of California, Los Angeles Graduate Division to N.I. Eisenberger, a postdoctoral research fellowship from the National Institutes of Mental Health to N.I. Eisenberger (T32 MH019925), a predoctoral research fellowship from the National Institutes of Mental Health to J.M. Jarcho as part of the UCLA Health Psychology Program (MH15750), and National Institutes of Health and VA Medical Research Grants to B.D. Naliboff (NR04881, P50 DK64539, R24 AT002681).

References

King KB, Reis HT, Porter LA, Norsen LH. Social support and long-term recovery from coronary artery surgery: effects on patients and spouses. Health Psychol 1993;12:56–63.

